由于操作过于频繁,请点击下方按钮进行验证!

数控加工手段的探究与实践

  随着数控加工技术的广泛运用,数控机床精度高、稳定性好、效率高、自动化强等一系列优点在机械加工中得到了充分体现,但用数控车床加工高硬度零件、薄壁零件、细长轴、细长孔等类零件,经常会出现零件易变形,零件尺寸及表面粗糙度不易保证等技术问题。近几年,伴随着新的刀具材料、新的表面涂层及新式刀具的出现,也衍生了新的切削加工工艺和加工方法,使此类零件在数控车床加工时的技术难题有了解决的可能。

  典型零件分析

  1.1基本情况介绍以某典型零件为例,该零件为高硬度薄壁筒形零件,内腔由螺纹、台阶孔及圆角构成,零件材料为30CrMnSiA高强度钢,硬度HRC50~55,壁厚1.5~2mm,内孔粗糙度Ra1.6,螺纹与外圆、内孔的同轴度Φ0.02mm,内孔圆度0.05mm,其形状及尺寸如所示。

  1.2主要加工难点分析可以看出,Φ64.7mm内孔、M65×1.5螺纹、Φ69mm外圆及Φ65.7mm内孔的断续加工是该零件最主要的加工难点,其Φ64.7mm内孔深度为122.8mm,最薄处壁厚仅为1.5mm.该零件淬火后加工,因刚性差,极易发生变形,加上排屑困难,表面质量、圆度均难以保证,且存在断续切削时刀具易崩刃、磨损等现象。为保证该零件M65×1.5螺纹与内孔、外圆同轴度,且减小其淬火热处理后的螺纹变形量,该零件螺纹加工只能在淬火后进行。这些加工难点的存在,使得加工过程中刀具选择、加工工艺路线安排、工艺装夹方式确定等成为该零件是否合格的关键。

  2.加工工艺过程设计通过对零件结构及其加工难点的分析,制定出以下加工工艺方案:a.下料b.退火c.普车粗加工外圆、平端面、钻Φ58mm通孔,保证两侧外圆端面与零件轴线垂直。

  d.数车粗加工内外型,平两侧端面,并与零件轴线垂直,为保证淬火后的零件硬度能够达到设计要求,内外型均保留1mm余量。

  e.热处理淬火HRC50~55.

  f.钻侧面6个Φ3.2mm孔。

  g精加工零件右端,平端面,精车内孔、M65×1.5螺纹,同时半精车外圆尺寸至Φ69.4mm(为零件最终加工留出0.2mm的精车余量),长度为66mm,并保证下道工序加工Φ64.7mm、Φ65.7mm内孔时能与螺纹同轴。

  h.精加工零件左端,平端面,半精车外圆至Φ69.4mm,长度为70mm,分别精车内孔Φ64.7mm、Φ65.7mm,由于Φ65.7mm内孔圆周上有均布的6个Φ3.2mm的小孔,因此存在断续切削,应尽量避免与Φ64.7mm内孔使用同一把镗孔刀进行加工。

  i.精车外圆,使用内涨胎精车外圆到Φ69mm.

  3.加工工艺方案设计4.1加工刀具的选择在刀具手册、样本中,大多数将淬火硬度大于45HRC以上的切削定义为硬态切削。硬态切削多数情况下只能采用PCBN(聚晶立方氮化硼)刀片或金刚石刀片进行加工,此类刀片多采用负前角方式,刀片不锋利,韧性差,易破碎,且切削速度要求高,价格昂贵,如果用此类刀片加工该薄壁零件,容易产生振动,且不能进行断续切削。因此,针对零件淬火后硬度达到HRC50~55,零件材料30CrMnSiA韧性、塑性好的特点,笔者根据自己多年来对刀具的研究,选择刀具。

  刀杆刚性好,且为正前角刀具,刀片为正前角,前角为18o,物理涂层(PVD)复合陶瓷,涂层结构为(Ti,Al)N+TiN,适合于断续加工,韧性、耐磨性好,切削锋利,其加工硬度为40HRC.

  内螺纹R166.4KF-20-16 R166.0L-16MM01-250 1020刀杆为全圆形结构,被包容面积大,装夹后刚性好,刀片为适合低速切削的物理涂层(PVD)刀片,表面有1~2μm的TiN涂层,切削刃锋利,耐磨性好,耐高温,抗切屑锤击能力强,加工时不易产生振动,其加工硬度为47HRC.

  镗孔A32T-SCLCL12 CCMT120404-WF5015(半精、精)刀杆为Φ32圆形结构,刚性好,且带有内冷却孔,能有效地使刀尖和零件得到充分冷却,降低零件切削温度,减小变形。刀片为非涂层金属陶瓷,主要成分为TiC、TiN,刀片具有良好的韧性,在整个刀具寿命期间都能保持刃口锋利,适合低速加工。同时,刀片带有修光刃(wiper),能有效提高零件表面粗糙度和加工效率(wiper刀片在表面粗糙度要求相同的情况下比普通刀片进给量快一倍)。

  以上选择的刀具,虽然在理论加工硬度上并不能满足加工需要,但笔者通过反复试验,经优化切削参数和刀具几何参数,完善夹具设计后,最终使刀具满足了零件薄壁、高硬度、断续的加工要求。

  3.2刀具的几何参数刀具几何参数的选择。

  3.3专用夹具设计⑴为了满足此零件加工需要,零件夹具设计时应先计算出卡爪夹紧力和切削力,从而得出机床卡盘需要调整到的压力。

  卡爪夹紧力公式:W=nDf KM 2式中:n――卡爪数;K――安全系数;f――摩擦系数;M――切削扭距;D――零件直径。

  切削力公式:F c=C Fc a xFc p f yFc v nFc c K MF KкrF KγоF KλsF KλεF切削扭距公式:M=2 FcD式中:C Fc――系数;x Fc、y Fc、n Fc――指数;a p――吃刀深度;f――进给量;V c――切削速度;K MF――材料修正系数;KкrF――主偏角修正系数;KγоF――前角修正系数;KλsF――刃倾角修正系数;KλεF――刀尖圆弧半径修正系数。

  经查切削手册,该零件加工时的主切削力为:F c=2795×0.4 1.0×0.15 0.75×88 -0.15×)(650 2109 0.75×0.89×0.9×0.6×0.8N=128N切削扭距:M=2 FcD=0.5×128×70 N?mm=4480 N?mm卡爪夹紧力:W=nDf KM 2=nf KFc=3.

  0 3 128 2×N=284.4N根据公式计算结果,留出一定的安全保障系数后,将卡爪夹紧力确定为300N.经过对机床液压缸压强逐步调整,最后试验出液压缸压强在0.9bar时卡爪夹紧力能够满足要求。另外,设计了扇形软三爪,以增大夹持面积,减小零件夹紧变形,扇形软三爪如所示。

  ⑵在零件内孔加工完时又发现在Φ64.7内孔的R3圆周处出现平均为0.05的局部变形(直径变大),分析这可能是在加工R3时由于切削量突变造成的。

  于是笔者一方面通过增加开槽套筒,来增加零件的有效壁厚,提高刚性,破坏振频,降低振动,另一方面在编制加工程序时,采用R圆弧逐步减小措施,减小切削突变量。

  ⑶为保证外圆精加工能一次完成,且零件支撑面具有足够的刚性,采用内涨胎(如所示)进行外圆切削加工,这样可以避免由于磨削而造成的零件应力变形,提高加工效率。内涨胎设计为橡胶膨胀式的夹紧方式,拉杆拉紧时通过螺栓和压板挤压楔块和支撑瓦片,橡胶套在楔块和支撑瓦片的作用下完成工件的夹紧。由于工件长度较长,靠近主轴的一端刚性较差,为此设计了两种楔块,楔块1的倾角为12°和45°,楔块2的倾角为12.5°和46°,保证了工艺系统的刚性。橡胶套中央部位是通过三片支撑瓦片传力的,保证了中央部位的有效支撑、夹紧。

  3.4切削参数选择由于此零件为高硬度薄壁零件,加工时,刚性较差,易产生振动,刀具的切削硬度又不足以满足加工需求,为此,在刀具和夹紧力相对固定的情况下,只能通过优化切削参数进行调整,以表面粗糙度计算公式Ra=εr f 50 2×(f为进给量,εr为刀尖圆弧半径)为参考,切削参数选择。

  3.5冷却方式冷却液为水溶剂极压切削液,冷却时采用机床主轴的冷却系统与刀座的冷却系统相配合,从零件左右两端同时进行冷却的方式,主轴冷却系统对准零件,刀座冷却系统对准刀尖,使加工部位得到快速充分冷却,以减小切削时切削热对零件的变形影响,冷却液对零件冷却时切忌时有时无,以避免刀具出现冷热交变而产生破裂现象。

  3.6排屑问题的处理由于该零件孔的加工深度较深,半精车、精车时产生的铁屑又多为红褐色带状屑,容易造成内孔表面划伤,甚至损坏刀尖,因此在精车、半精车每一刀完成后应暂停,及时清理铁屑。

  4.数控加工程序设计

  4.1数控程序设计流程数控程序设计流程。

  4.2数控程序设计此零件加工时采用的是西门子840D数控系统,其关键点加工程序如下。零件右端内孔及螺纹加工程序:

  5.结束语通过笔者介绍的方法,加工后的零件内孔粗糙度达到了Ra1.6,螺纹与外圆、内孔的同轴度为0.02mm,内孔圆度为0.03mm,完全符合设计要求,一次交验合格率达到了100%。有效解决了高硬度薄壁类零件的车削加工难题,并为高硬度材料零件的螺纹、断续加工等提供了一些经验,设计的夹具和总结的优化切削参数,打破了硬态切削的一些常规做法,大幅度提高了加工效率,降低了刀具费用。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到

相关主题