研究人员利用3D打印超材料开发出新型光学设备

国际金属加工网 2019年05月05日

美国塔夫斯大学(Tufts University)的工程师们使用3D打印的超材料(metamaterial)来开发新型的光学设备。

该研究发表在Springer Nature 出版的《微系统与纳米工程》(Microsystems & Nanoengineering)期刊上,展示了利用立体光刻技术(SLA)创建超材料嵌入式几何光学(MEGOs)的方法。这些3D打印的结构能够从所选波长的任何方向吸收电磁信号。

“利用超材料整合功能的能力,对于减小光谱仪和其他光学测量设备的尺寸非常有用,因此它们可以设计用于便携式现场研究,”塔夫茨大学工程学院电气和计算机工程教授Sameer Sonkusale说。

用于光学设备的3D打印超材料

此次3D打印的超材料结合了独特的属性,如电动和声波操作、光学特性,以及压力引起的形状转换。这些材料可以在低至200纳米的分辨率下制造,这使得它们足够小以处理波长的能量,因此可用于光学和医疗设备。

根据Tuft纳米实验室的研究人员的说法,双光子聚合(TPP)和SLA等3D打印技术可以为制造更精细的超材料提供这样的打印分辨率,这些超材料可以检测和操纵包括可见光在内的电磁信号。

因此,该团队使用Formlabs Form 2 3D打印机,金属涂层和蚀刻来制作具有复杂几何形状的超材料,用于微波范围内的波长。在此基础上,他们创建了一种半球形装置,可以在选定波长的任何方向吸收电磁信号。这种设计灵感来源于飞蛾的复眼,它就是使用这种功能来检测光线的。

第二种方案是将溅射金属放置在器上,然后浸没在蚀刻剂(腐蚀性化学品)中以除去衬底上的现有金属。

作为增材制造的结果,可以设想各种形状、尺寸和图案取向以产生MEGO,其以比传统制造方法改进的方式吸收、增强、反射或弯曲。

“MEGO 3D打印的全部潜力尚未实现,”塔夫斯大学工程学院Sankusale实验室研究生、该研究的主要作者Aydin Sadeqi补充道。“我们可以利用当前的技术做更多的事情,并且3D打印一定会由此衍生出巨大的潜力。”

“利用金属图案嵌入的大面积3D电介质打印技术,我们能够设计和实现具有独特功能的MEGO设备。”

研究人员认为,提高3D打印的分辨率将使MEGO设备在不久的将来进一步达到光学频率的太赫兹波长。

研究成果《超材料嵌入式几何光学(MEGO)的3D打印》(Three-dimensional printing of metamaterial embedded geometrical optics (MEGO))由Aydin Sadeqi、Hojatollah Rezaei Nejad、Rachel E. Owyeung和Sameer Sonkusale共同撰写。

此方法中使用以下组件:

- 蘑菇状超材料

- 弯曲的广角超材料吸收器/反射器

- 频率选择性蛾眼半球吸收器

典型的超材料包括左手材料、光子晶体、超磁性材料、金属水等,它们时常表现出“超常”的物理特性,例如负磁导率、负介电常数、负折射率等。

如今,超材料已经成为一项非常热门且应用范围极广的前沿技术。超材料的应用领域包括光纤、医疗设备、航空航天、传感器、基础设施监控、智能太阳能管理、雷达罩、雷达天线、声学隐身技术、废热利用、太赫兹、微电子、吸波材料、全息技术等。

无论是现在还是未来,研究人员们开发出的制造方法都表明,3D打印技术有望拓展几何设计与复合材料的范围,带来具有新颖光学特性的设备。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • 详解航空燃油滑油3D打印热交换器设计流程
  • 20-05-25
  • 杭电教授使用易加三维金属3D打印机研究如何通过原位控制钛合金植入体表面微观结构促进其骨整合
  • 20-05-25
  • 先临三维3D打印为抗疫产品紧急制造出力,全球抗疫
  • 20-05-25
  • 蔡司「“智”动化主题月」开启3C电子“智慧”之眼
  • 20-05-25
  • 蔡司:别有洞天的动力电池微观世界
  • 20-05-25
  • 质与速的创新诠释,蔡司“智”动化圆桌在线研讨会全程回顾
  • 20-05-25
  • 蔡司工业测量:赢在起跑线上
  • 20-05-22
  • 你身边的理想测量室——蔡司上海客户中心
  • 20-05-22
  • 美国科学家开发新型生物墨水,能直接“打印”出骨组织
  • 20-05-22
  • 荷兰开发可用于航空航天结构件损伤检测的3D打印复合材料
  • 20-05-21
  • 美国大学教授利用3D打印技术推进癌症研究
  • 20-05-20
  • 3DSYSTEMS:5.21在线研讨会:如何将金属增材制造与传统生产线集成
  • 20-05-20
  • PolyWorks 在线研讨会 | #03 如何高效检测薄壁件?
  • 20-05-20
  • 雷尼绍 “对抗”残留应力有妙招!
  • 20-05-20
  • 雷尼绍inVia™ Qontor®拉曼光谱仪:“无处藏身”的塑料微粒
  • 20-05-20
  • 『新品速递』捕捉零件的DNA—温泽exaCT L
  • 20-05-20
  • 温泽:“5·20世界计量日” | 测量支撑全球贸易
  • 20-05-20
  • 喜报 | 先临三维获杭州市“萧山区强科技创新企业”荣誉
  • 20-05-19
  • 先临三维直播 | 5月彩色专题月,让我们走进3D扫描和3D打印
  • 20-05-19
  • 使用API激光跟踪仪实施高精度超声波探伤系统的检测与标定
  • 20-05-19
  • 雄克
    欧特克

    编辑推荐

    您关注的品牌

    您关注的主题

    猜您喜欢

    分享到

    相关主题