由于操作过于频繁,请点击下方按钮进行验证!

高速滚削加工技术在齿轮加工行业的广泛应用

  高速滚削加工技术已广泛应用在汽车、摩托车等齿轮加工行业。在设计高速加工滚刀时应主要从排屑畅通性、散热迅速性、刀齿耐冲击性、前后刀面抗磨损性等几方面考虑。

  增大排屑容屑空间(容屑槽)

  散热迅速是高速滚削的关键,因此让切屑迅速离开刀具,将大量的切削热量带走,采用增大容屑槽的容屑、排屑空间是有效措施之一。这有助于切削液在滚削的全过程中,有足够的间隙至始至终地充分浇注切削区,以冲走大块及碎小末状切屑,冷却刀尖部,达到降低工件和滚刀切削区温度的目的;切削液还可起到润滑前刀面的作用,以减轻切屑对前刀面的摩擦,延缓前刀面磨损。   

  滚削是一种断续切削,在高速加工中会加剧对刀齿的冲击,因此必须提高刀齿的耐冲击强度。在不改变容屑、排屑空间的前提下,采用降低容屑槽深度,将槽底部设计成整圆弧以增加其抗弯强度的方法可以增强耐冲击的能力。

  增加圆周齿数

  与传统滚削相比,高速滚削加工的进给量和切削深度都较大,如果仍按常规设计,那么圆周上每个切削齿的切削负荷将随之增大。增加圆周齿数是降低切削负荷的有效途径之一。在满足滚刀顶刃最大许可切屑厚度的条件下,选择合适的、较多的圆周齿数可增加被切齿轮轮齿面的包络切痕,从而达到提高齿轮几何精度的目的。

  加大顶刃及侧刃后角

  如果按常规设计刀具的顶刃及侧刃后角,那么在高速滚削中,当增大进给量和切削深度时,其实际工作后角将减小(甚至为零)。因此,采用加大顶刃及侧刃后角的方法,可以增大工作后角以及后刀面与已加工表面的间隙,有利于切削液进入后刀面与已加工表面的切削区,带走碎小末状切屑和切削热量,润滑后刀面,减小两表面的接触面积,从而达到减轻两表面间的摩擦、延缓后刀面磨损的目的。

  采用零前角

  在高速切削时,零前角和正前角刀具所受切削力相差不大。但由于零前角增大了刀齿的切削楔角,刀齿的刀尖部强度得到相应提高,因此在切削时有助于加快切屑的变形,缩短切屑在前刀面上的滑移距离及与前刀面的接触时间,使其快速脱离刀齿前刀面,减少传递给刀齿的热量,减轻切屑对前刀面的摩擦,使切削液更容易注入前刀面切削区,使排屑通畅迅速,从而提高前刀面的抗磨损能力,并使设计、计算、加工、检测、重磨更为简单容易。

  加大齿顶圆弧半径

  一般来说,刀齿顶刃与侧刃相连处的尖角最易磨损,在高速滚削加工中尤其明显。加大齿顶圆弧半径有利于减少齿顶尖角部的热量集聚,增大与切屑的接触弧长,减薄切屑厚度,提高刀具的抗磨损能力和抗冲击的稳定性。因此,在满足被切齿轮有效曲线的起始圆位置要求的前提下,可以尽量加大齿顶圆弧半径。

  钝化切削刃口

  一般的新磨高速钢刀具刃口钝圆半径为8~16?m,而且刃口上会有微小毛刺,如果不钝化会造成切削初期的微小崩刃和裂纹,涂层也在刃口上“站”不住,因此需要光整钝化刃口。由于涂层后会增加钝圆半径,需涂层的刃口不能钝化太过,一般钝化到20~30?m,这有利于切削刃切入金属内部起到减振作用,有利于磨损沿前刃面和后刀面同时进行,使切削刃快速进入“自砺”期,继而平稳地进入正常切削期。

  采用小直径滚刀

  在滚刀外圆处,当线速度相同时,小直径滚刀允许有较高的滚齿机主轴转速。刀齿与滚刀轴线的距离小,受到的冲击力和扭矩也小,可减小滚齿切入和切出时间,提高生产效率。

  提高滚刀的磨削和涂层质量

  涂层具有隔热、润滑、抗磨损等保护被涂基体的作用。涂层涂附在高速钢滚刀表面上,滚刀的磨削质量直接关系到涂层的附着质量和保护作用。在高速滚削中,滚刀的磨损形式主要以月牙洼磨损为主,前刀面的质量,如表面粗糙度、退火(脱碳)层、硬化层等直接关系到滚刀的使用寿命,涂层的颗粒度、涂层厚度、层数、致密度等因素均对滚刀的使用寿命有极大的影响。   

  在生产实践中,根据高速滚削中出现的新问题和新情况,有针对性地采取相应措施,才能设计出真正适合于高速滚切加工的滚刀,以缩短与国外先进滚刀的差距。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • 海克斯康携手青岛工程职业学院共建“海克斯康技能认证培训中心”
  • 24-05-17
  • 海克斯康OCTAV HP入选工信部主办高端仪器论坛首发产品
  • 24-05-17
  • AI+影像测量,强强联合让检测效率与精度双提升
  • 24-05-17
  • 海克斯康荣获首届制造业智能化解决方案创新大赛二等奖及优秀作品奖
  • 24-05-17
  • 大会日程 | 邀您共赴海克斯康2024“世界计量日”主题大会
  • 24-05-17
  • 达诺巴特参加2024年斯图加特磨削展
  • 24-05-17
  • 达诺巴特战略收购美国列车车轮维修公司Delta Wheel Truing Solutions
  • 24-05-17
  • Mazak DISCOVER 2024自动化及综合应用展示会
  • 24-05-17
  • 极限挑战| FORTiS™封闭式光栅极端测试结果竟然是……
  • 24-05-17
  • 开启报名| 2024 ANCA年度刀具大赛
  • 24-05-16
  • 轮毂单元钻孔—OSG有自己的提案
  • 24-05-16
  • CREAFORM 形创科普台 | 探索结果,揭露真相:就检测时间的节省情况对两种 3D 扫描计量解决方案进行基准测试
  • 24-05-15
  • 力劲智能化、数字化、绿色化制造解决方案亮相巴西
  • 24-05-15
  • 株洲钻石 车削应用 YB6315/YB6325
  • 24-05-15
  • 助力汽车制造绿色转型|力劲一体化压铸及后加工解决方案亮相2024立嘉国际智能装备展览会
  • 24-05-15
  • 第十六届中国国际机床工具展览会-参展观众网上登记指南
  • 24-05-14
  • Radian激光跟踪仪机器人天轨直线度高效检测应用纪实
  • 24-05-14
  • 赋能先进材料,孕育春暖花开:大湾区光谱科技创新之旅
  • 24-05-14
  • 雷尼绍拉曼光谱技术助力碳减排的实现(下)
  • 24-05-14
  • 首站到访力劲塑机 | 香港中华厂商联合会中山科技考察团参访粤港澳大湾区企业
  • 24-05-13
  • 分享到

    相关主题