由于操作过于频繁,请点击下方按钮进行验证!

拓扑优化在飞机零部件叠层制造中的应用

【编者按】拓扑优化是结构优化的一种。结构优化可分为尺寸优化、形状优化、形貌优化和拓扑优化。


金属的叠层制造(ALM)是在飞机结构研发早期阶段使用的一种零件加工的新型技术。ALM的优势体现在生产部件的设计灵活性、较低的材料浪费、低生产成本等,尤其针对那些难以加工的硬质材料。

设计灵活性使得ALM成为拓扑优化的完美应用。在应用时,拓扑优化的形状可以被保持,最终的质量和结构属性也更加接近那些优化得到的形状。

EADS创新中心在TSB的资助下,与工业界和学术界共同合作进行AVLAM项目的开发,来探索能否为航空航天业制造出优化的ALM零件,达到技术和商业的可行性。作为试验,他们使用了HyperWorks的拓扑优化工具OptiStruct软件,来为空客A320的零件进行优化,进而推广应用于其它的航空结构。

图1:空客A320原机舱铰链支架(后)优化设计ALM制造后形状(前)

挑战

ALM是一种新兴的制造技术,它基于相对灵活的设计约束限制,通过优化设计达到显著降低零件重量的目标。

ALM制造的成本独立于零件的复杂度,所以这是一个良性循环,即通过优化设计节省了零件的材料用量,从而降低成本。

此项目的目标是使用ALM提供的设计自由度来论证潜在的材料重量节省能力,并且保持与原零件相同的性能。

解决方案

EADS创新中心实施优化策略,以尽可能少的材料生产一个零件(例如最轻重量)。他们采用OptiStruct进行拓扑优化,其中包括以下两个设计过程:

第一个设计周期

在CATIA V5中进行初始设计并在选定的条件下,进行了鲁棒性测试。在对结构进行改进时使用HyperWorks的HyperMorph功能对其CAE模型进行新的约束和新的网格变形,再使用OptiStruct对其进行了形状和尺寸的优化。在这个阶段,零件仅重310g.

第二个设计周期

基于第一个设计周期的结果,施加新的各种约束,重复优化的过程。结果使当前的零件在反复优化后比第一个设计阶段中得到的仅仅重16g,总重量为326g。

图2:优化设计周期

                           图3:原铰链的FEA模型

             

 图4:优化后的铰链FEA模型

结论

OptiStruct独特的拓扑优化技术进一步证实了,对ALM制造的小尺寸飞机零部件使用优化技术可以节省可观的材料。优化后得到的零件质量只有326g,比起原零件的质量918g,足足减少了64%。

优化设计结果保留了相同的刚度特性和螺栓载荷,零件上的应力减小了,强度却得到了提升。

这样的结果表明了一个强大的商业案例,就是一个飞机中成千上万的小尺寸ALM零件都可以被优化减重。我们可以充分利用这一新技术和工艺制造的优势,从而实现航空航天工业领域产品减重、优化设计及降低成本等目标。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到

相关主题